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Abstract. We give a continuum limit value of the lowest moment of a twist-2 operator in pion states
from non-perturbative lattice calculations. We find that the non-perturbatively obtained renormalization
group invariant matrix element is 〈x〉RGI = 0.179(11), which corresponds to 〈x〉MS(2 GeV) = 0.246(15). In
obtaining the renormalization group invariant matrix element, we have controlled important systematic
errors that appear in typical lattice simulations, such as non-perturbative renormalization, finite size effects
and effects of a non-vanishing lattice spacing. The crucial limitation of our calculation is the use of the
quenched approximation. Another question that remains not fully clarified is the chiral extrapolation of
the numerical data.

PACS. 11.15.Ha, 12.38.Gc

1 Introduction

Deep inelastic scattering [1] continues to provide important
information on the structure of hadrons. Phenomenological
fits to experimental data give values for the moments of
parton distribution functions (PDF), including estimates
of their errors; see e.g. [2–4]. Since such moments can be
expressed as expectation values of local operators, they are
accessible to lattice calculations [5]. A direct comparison
of these lattice calculations of moments with the results
of the phenomenological fits will test whether these fits
are consistent with direct QCD predictions. If we think of,
e.g., precise determinations of the strong coupling constant
from scaling violations in deep inelastic scattering, such
non-trivial checks are mandatory.

Lattice results do not come for free, however: Concepts
of non-perturbative renormalization have to be developed;
in the process of moving from the continuum of space-
time to an euclidean lattice a non-vanishing value of the
lattice spacing a is introduced, leading to discretization
effects; running simulations on a computer necessitates the
use of an only finite volume; and the limited amount of
computing resources leads to the fact that simulations are
performed at rather large values of the quark masses that
are far from their values as assumed in nature. In addition,
at present we are left with the quenched approximation,
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neglecting internal quark degrees of freedom. Finally, the
numerical results are plagued by statistical errors that can
be substantial for bad choices of operators.

In the course of our work [6–11] to reach a reliable
value for a moment of a parton distribution function we
eliminated important sources of systematic errors besides
the quenched approximation (see [12–14] for summaries of
these works). The transition to full dynamical simulations
is undertaken world-wide today [15] and the next years will
see the exciting results of such calculations. Another open
question is the chiral extrapolation that is not understood
presently (see [16] and references therein).

Let us sketch how we have addressed the systematic
errors of the lattice calculations in our work.
(1) Non-perturbative renormalization. We adopt in our
work [6,7,11] the Schrödinger functional (SF) scheme [17],
which has been proved to be a very successful and practical
way to compute scale dependent renormalization constants.
By evolving deep into the perturbative regime, renormal-
ization group invariant (RGI) quantities can be determined
that allow one to relate lattice results to any desired con-
tinuum renormalization scheme [18–20]. In this paper we
compute the renormalization factor at the matching scale
(see Sect. 3.2 for details).
(2) Discretization effects. We have controlled effects of the
non-vanishing lattice spacing a by performing all our lattice
calculations with several values of a with two different lat-
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tice formulations of lattice QCD: one is the standard Wilson
fermion, the other the non-perturbatively improved Wil-
son fermion formulation. In this way, all quantities could
be extrapolated to their continuum value in a controlled
way performing a constrained continuum limit [8, 11]. In
particular in this work we have used this strategy to control
the continuum limit of the renormalized matrix element.
(3) Finite size effects. The finite size effects were con-
trolled in two ways. For the computation of the evolution
of the renormalization constants [7, 9, 11], the finite vol-
ume Schrödinger functional scheme was used, in which the
scale µ is identified with the inverse lattice extent L−1. In
this way, the finiteness of the lattice has been utilized to
determine the scale dependence.

For the matrix elements, a careful test of finite size
effects has been performed [21] with the somewhat sur-
prising result that such effects are rather large for the pion
matrix element at a point where the pion mass itself shows
no effects. Since this was done for pion matrix elements
only, it will be very important to repeat the analysis for
baryon matrix elements, where such effects are expected
to be even larger [22].
(4) Statistical errors. By employing generalized boundary
conditions in space, the signal to noise ratio of operators
that need an external momentum could be minimized by
optimizing parameters that are introduced by the gener-
alized boundary conditions [11]. This allowed us to obtain
results that would not have been possible otherwise.
(5) Chiral extrapolation. The extrapolation of the numerical
data from the rather heavy quark masses, where the simu-
lations are performed, to their physical values is still under
debate and not clarified, see [16] for a general discussion,
and [23–28] for works on the chiral extrapolation of PDF.
We will follow the strategy in this work of first extrapolating
the values of our non-perturbatively improved matrix ele-
ments to the continuum limit. Comparisons to predictions
of chiral perturbation theory are then performed directly
in the continuum in order to avoid lattice spacing effects
that would render the interpretation difficult.

After having understood and overcome the above dif-
ficulties, we can now provide results that are free from
these systematic uncertainties besides the, presently still
unavoidable, quenched approximation. In this work we
summarize our result and, most importantly, we provide
the missing part, i.e. the renormalized matrix element at
the hadronic scale µ0 � 275 MeV down to which the scale
evolution has been computed, ( [11]), with full control on
the continuum limit and a careful analysis of the chiral ex-
trapolation. As the most important quantity we consider
the renormalization group invariant (RGI) matrix element
of the twist-2 operator between pion states corresponding
to the first moment of the valence quark distribution, which
we find to be

〈x〉RGI = 0.179(11). (1)

This quantity is of central importance since it allows
us to relate the non-perturbatively obtained results using
a particular lattice renormalization scheme to more con-
ventional schemes. For example, if we use the MS scheme,
we find that at a scale of 2 GeV the value of the matrix

element compares to phenomenological estimates of the
same quantities extracted from global fits of experimental
data [29] as follows1:

〈x〉MS(µ = 2 GeV) = 0.246(15),

〈x〉phen(µ = 2 GeV) = 0.21(2). (2)

These results demonstrate that the running of the mo-
ments of partondistribution functions in the continuum can
be calculated from lattice simulations in an intrinsic pertur-
bative scheme like theMSretaining all the non-perturbative
information coming from the RGI matrix element. In ad-
dition, the errors coming from the lattice simulations are
comparable to the experimental errors, which opens the
possibility to perform direct tests of QCD as the theory of
the strong interaction.

2 Renormalized matrix element

The moments of the parton density distributions are re-
lated to the expectation values of local operators, which
are renormalized multiplicatively by applying appropriate
renormalization factors Z(µ) that depend on the energy
scale µ (see, e.g., [1]). This leads one to consider renormal-
ized matrix elements Oren(µ) using some renormalization
scheme, denoted by ren. For the lattice calculations we are
aiming at here, a very useful scheme is the Schrödinger
function (SF) renormalization scheme [17] since it applies
in small volumes.

If the energy scale µ of Z(µ) is chosen large enough, it
is to be expected, and indeed it can be checked explicitly,
that the scale evolution is very well described by pertur-
bation theory, giving rise to the following definition of a
renormalization group invariant (RGI) matrix element:

ORGI = OSF(µ) · fSF(ḡ2(µ)), (3)

with ḡ(µ) the running coupling computed in the same SF
scheme and

fSF(ḡ2) = (ḡ2(µ))−γ0/2b0

· exp

{
−

∫ ḡ(µ)

0
dg

[
γ(g)
β(g)

− γ0

b0g

]}
, (4)

where β(g) and γ(g) are the β and anomalous-dimension
functions computed to a given order of perturbation the-
ory in a specified scheme, i.e. here the SF scheme. Once
we know the value of ORGI evaluated non-perturbatively,
the running matrix element in a preferred scheme can be
computed, for example in the MS scheme:

OMS(µ) = ORGI/f
MS(g2

MS(µ)), (5)

with now, of course, the β and γ functions computed in the
MS scheme. Thus, although the SF is an unphysical finite

1 Some details on the extraction of the phenomenological
number can be found in Sect. 5.1 of this paper.
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volume scheme (but therefore most suited for lattice simu-
lations) it can be related to more conventional continuum
renormalization schemes by providing the renormalization
group invariant quantities.

A non-perturbatively obtained value of the renormal-
ization group invariant matrix element is hence of central
importance. Its calculation has to be performed in sev-
eral steps. The reason is that we have to cover a broad
range of energy scales – from the deep perturbative to the
non-perturbative region. Using the scale dependent renor-
malization factorZSF(µ), we write the renormalized matrix
element of (3) as

OSF(µ) =
〈h|O|h〉
ZSF(µ)

, (6)

where |h〉 is the hadron state we are interested in. So far, all
our discussions have been in the continuum. However, if we
think of the lattice regularization and eventual numerical
simulations to obtain non-perturbative results, it would be
convenient to compute the renormalized matrix element at
only one (i.e. small hadronic) scale µ0. We therefore rewrite
the RHS of (6) as

〈h|O|h〉
ZSF(µ)

=
〈h|O|h〉
ZSF(µ0)

· ZSF(µ0)
ZSF(µ)︸ ︷︷ ︸

≡σ(µ/µ0,ḡ(µ))

, (7)

where we introduce the step scaling function σ(µ/µ0, ḡ(µ)),
which describes the evolution of the renormalization factor
from a scale µ0 to a scale µ. The advantage of concentrating
on the step scaling function instead of the renormalization
factor itself is that the step scaling function is well defined in
the continuum and hence suitable for eventual continuum
extrapolations of lattice results. We finally write the RHS
of (3) as

ORGI = OSF(µ0)σ(µ/µ0, ḡ(µ)) · fSF(ḡ2(µ))︸ ︷︷ ︸
≡SUV,SF

INV (µ0)

, (8)

with OSF(µ0) the renormalized matrix element, which is
to be computed only once at a scale µ0 and the ultraviolet
(UV) invariant step scaling function SUV,SF

INV (µ0), which
still depends on the infrared scale µ0, and on the renor-
malization scheme adopted. In [11] we have given a value
for the UV invariant step scaling function and checked the
independence on the ultraviolet scale µ. In this work we will
provide the missing part, i.e. the renormalized matrix ele-
ment at the scale µ0. The final result for the renormalized
matrix element of the pion that we are going to provide
here was made possible by a number of theoretical and
conceptual developments that we could achieve over the
last years [6–9]. The methods developed there can imme-
diately be taken over to other matrix elements than the
lowest twist case of the pion considered here and to the un-
quenched situation. Nevertheless, with this paper we want
to finish the analysis of the pion matrix element with the
aim to have eliminated important systematic uncertainties
besides the quenched approximation.

2.1 Transfer matrix decomposition

The moments of the parton distribution functions (PDF)
are related to matrix elements of leading twist τ (τ = dim−
spin) operators of given spin, between hadron states h(p)

〈h(p)|Oµ1...µN
|h(p)〉

= M (N−1)(µ)pµ1 . . . pµn
+ terms δµiµj

, (9)

〈x(N−1)〉(µ) = M (N−1)(µ = Q). (10)

We concentrate in this work on the twist-2 operator corre-
sponding to the second moment of the parton distribution
functions between charged pion states. In the following we
consider the fermionic fields ψ(x) and ψ̄(x) as doublets
in the flavor space. In particular we will concentrate on
the valence u or d̄ distribution as explained below. This
amounts to considering operators of the form

Oµν(x) =
1
4
ψ̄(x)γ{µ

↔
Dν} ψ(x)− δµν · trace terms , (11)

where {. . .} means symmetrization on the Lorentz indices,
↔
Dµ=

→
Dµ −

←
Dµ and

→
Dµ=

1
2

(∇µ +∇∗µ),
←
Dµ=

1
2

(
←−∇µ +

←−∇∗µ) . (12)

The definitions of the lattice derivatives and conventions
are given in the appendix.

There are two representations of such an operator on the
lattice [30]. The first representation takes µ �= ν, whereas
the second one uses µ = ν. The precise definitions of the
operators used here are

O12(x) =
1
4
ψ̄(x)γ{1

↔
D2} ψ(x) (13)

and

O44(x) =
1
2
ψ̄(x)

[
γ4
↔
D4 − 1

3

3∑
k=1

γk

↔
Dk

]
ψ(x) . (14)

In computing the matrix elements of these operators, a
non-zero momentum in two different spatial directions has
to be supplied for O12(x) in (13), whereas for the operator
O44(x) in (14) no momentum is needed. It is to be expected,
and indeed verified in numerical simulations, that the signal
of the matrix element of O44(x) is better than the one of
O12(x). Thus in the following investigation we consider
only O44(x).

Our setup of lattice QCD is on a hyper-cubic euclidean
lattice with spacing a and size L3×T . We impose periodic
boundary conditions in the spatial directions and Dirichlet
boundary conditions in time, as they are used to formulate
the Schrödinger functional (SF) [17] (we refer to these ref-
erences for any unexplained notation). Using homogeneous
boundary conditions, where the spatial components of the
gauge potentials at the boundaries and also the fermion
boundary fields are set to zero, the Schrödinger functional
partition function can be written as [31]

Z = 〈i0|e−TH
P|i0〉 , (15)
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where the initial and final states |i0〉 carry the quantum
numbers of the vacuum and P denotes a projector on gauge
invariant states. The states with charged pion quantum
numbers in the Schrödinger functional are, indicated with
ζ and ζ̄ (and the corresponding ζ ′ and ζ̄ ′), a flavor doublet,
the dimensionless fields

S =
a6

L3

∑
y,z

ζ̄(y)γ5τ
+ζ(z) , S

′ =
a6

L3

∑
u,v

ζ̄ ′(u)γ5τ
−ζ ′(v) ,

(16)
where τ± = 1√

2
(τ1 ± iτ2) and τk with k = 1, 2, 3 are the

usual Pauli matrices. The pion interpolating fields S and S
′

are respectively localized atx0 = 0 andx0 = T . The desired
matrix element is obtained from the correlation function

f44(x0) = − 1
2
〈 S
′O44(x) S 〉 , (17)

where we have used the independence on the spatial com-
ponents x of x = (x0,x). The Wick contractions of this
correlation function contain also a disconnected piece that
we neglect, consistently with the fact that we are interested
in the valence quark distribution. For normalization pur-
poses it is important to define the boundary to boundary
correlation function

f1 = − 1
2
〈 S
′
S 〉 . (18)

The basic fermionic Wick contractions for these two cor-
relation functions are depicted in Fig. 1.

In the following we will denote by |i0〉 and |iπ〉 the
states carrying respectively the quantum numbers of the
vacuum and of the charged pion at zero momentum. The
correlation functions f44 and f1 have the following quantum
mechanical representations:

f44(x0) = Z−1 1
2
〈iπ|e−(T−x0)HP O44 e−x0H

P|iπ〉 , (19)

f1 = Z−1 1
2
〈iπ|e−TH

P|iπ〉 . (20)

X

T

0

time

space

C’

C

T

0

time

space

C’

C

Fig. 1. Fermionic Wick contractions for the f44 and f1 corre-
lators. C and C′ denote the boundary gauge field respectively
at x0 = 0 and x0 = T ; x denotes the insertion point of the
local operator

In order to extract the pion mass we have analyzed also
the improved axial correlation function

f I
A(x0) = −L

3

2
〈AI

0(x) S 〉 , (21)

where

AI
0(x) = A0(x) + acA

1
2

(∂∗0 + ∂0)P (x) ; (22)

cA is the improvement coefficient and the axial and pseu-
doscalar local operators take the form

A0(x) = ψ̄(x)γ0γ5τ
−ψ(x), (23)

P (x) = ψ̄(x)γ5τ
−ψ(x). (24)

The non-perturbative value of cA was taken from [32].
Following [31] we insert a complete set of eigenstates of

the hamiltonian and, retaining only the first non-leading
corrections, we have for the improved axial current corre-
lation function f I

A(x0) and f1,

f I
A(x0) � L3

2
ρ〈0, 0|AI

0|0, π〉 (25)

· e−mπx0{1 + ηπ
Ae−x0∆ + η0

Ae−(T−x0)mG},

f1 � 1
2
ρ2e−mπT , (26)

where the coefficient appearing in this expansions are

ρ =
〈0, π|iπ〉
〈0, 0|i0〉 , (27)

ηπ
A =

〈0, 0|AI
0|1, π〉〈1, π|iπ〉

〈0, 0|AI
0|0, π〉〈0, π|iπ〉

, (28)

η0
A =

〈i0|1, 0〉〈1, 0|A0|0, π〉
〈i0|0, 0〉〈0, 0|A0|0, π〉 . (29)

The energy gap in the pion channel between the funda-
mental and the first excited state is denoted by ∆ and is
estimated to be∆r0 ≈ 3.2, whilemG is the mass of the 0++

glueball, mGr0 ≈ 4.3 [31]. For the matrix element we find

f44(x0) � 1
2
ρ2〈0, π|O44|0, π〉e−mπT

· {1 + ηπ
O44

e−x0∆ + ηπ
O44

e−(T−x0)∆} , (30)

where we define the ratio

ηπ
O44

=
〈0, π|O44|1, π〉〈1, π|iπ〉
〈0, π|O44|0, π〉〈0, π|iπ〉 . (31)

A corresponding transfer matrix decomposition is ob-
tained for the correlation function f12. From these expres-
sions it becomes clear that the matrix element we are in-
terested in, neglecting contributions from excited states,
can then be extracted from the plateau value of the fol-
lowing ratio:

f44(x0)
f1

= 〈0, π|O44|0, π〉 . (32)
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Fig. 2. Effective pion mass as a function of the theoretically
expected excited state contributions obtained from a transfer
matrix decomposition. Data corresponds to the simulation point
at β = 6.45 for three κ values with the non-perturbatively
improved action (see Table 2). In the left panel we plot the
effect of an excited pion state, whereas in the right panel we
show the effects of the glueball contribution

Finally, in order to relate this numerically computed ratio
with the corresponding continuum operators in Minkowski
space, we need a suitable normalization factor,

〈x〉 =
2κ
mπ
〈0, π|O44|0, π〉, (33)

with κ the standard hopping parameter of the Wilson–
Dirac operator. We remark here that 〈x〉 corresponds to the
valence distribution of a single quark (u or d̄ for example).
We followed [31] in order to extract the plateau values for
the effective pion mass and the matrix elements. Using the
transfer matrix decomposition in (25), the effects of higher
excited states for the effective mass are given by

meff(x0) (34)

� mπ +∆ ηπ
A e−∆ x0 −mG η0

A e−mG (T−x0) .

In Fig. 2 we show the effective pion mass as a function of
the anticipated excited state contaminations given in (34).
From the linear behavior of the effective mass as a func-
tion of e−∆ x0 and e−mG (T−x0) we conclude that these are
indeed the leading corrections.

The contribution from excited states on the plateau
value of the matrix element following (26) and (30) is
given by

〈x〉(x0) � 〈x〉
{

1+ηπ
O44

(e−∆ x0 + e−∆ (T−x0))
}
. (35)

We show in Fig. 3 the matrix element as a function of
the expected excitation in (35). Again we observe a linear
behavior of the matrix element indicating that the correc-
tions come mainly from the first excited pion state. It is
important to remark that mG and ∆ have been computed
using different boundary conditions [31], where in prin-
ciple excited states corrections have different amplitudes.
The agreement between the data and the expected form

0.2

0.22

0.24

0.26

0.28

0.3

0 0.001 0.002 0.003

<
x>

e-∆ x0

Fig. 3. Matrix element as a function of the excited state
contribution as obtained from a transfer matrix decomposition.
Data correspond to the simulation point at β = 6.45 for κ =
0.1350 with the non-perturbative improved action (see Table 2).
In the plot we superimpose the results for x0 > T/2 and
x0 < T/2

Fig. 4. Plateaux for the effective pion mass. The fit region
to extract the mass is indicated as a solid line. The simulation
was done at β = 6.45

is then reassuring that the excited states contamination is
well controlled.

From Figs. 2 and 3 we can read off what the systematic
error on the pion mass or the matrix element value is if a
particular value of the time separation x0 is taken to extract
their values. In our analysis, we demanded a systematic
relative error for all the β and k values, coming from the
excited states, of 0.1% for the pion mass and 0.4% for the
matrix element, which is well below the statistical accuracy
of our computations. Relating the value of x0 to physical
units, the above choice for our desired accuracy leads to a
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Fig. 5. Plateau for the matrix element. The fit region to
extract the mass is indicated as a solid line. The simulation
was done at β = 6.45

window for the extraction of the plateau that for all the β
and k values are around 1.2 fm � x0 � T −1.1 fm for meff ,
and 1.3 fm � x0 � T − 1.3 fm for the matrix element.

We give in Fig. 4 an example for the plateau behavior of
the effective mass and in Fig. 5 an example for the plateau
behavior of the matrix element. In Table 2 we summarize
the time intervals chosen for mπ and 〈x〉 that fulfill the
aforementioned conditions.

3 Numerical details and results

In this section we will give numerical details and results
about the computation of the bare matrix element and of
the renormalization constant at the low energy scale µ0.

3.1 Bare matrix element

We have performed a set of quenched simulations for five
β values, varying the lattice spacing between a = 0.093 fm
and a = 0.048 fm; see Table 1.

In order to have better control over the continuum
extrapolation of our lattice results we performed two inde-
pendent sets of simulation at these β values, one employ-
ing standard Wilson fermions and the other using non-
perturbatively O(a)-improved Wilson fermions [32,33]. As
mentioned already above, we used the quenched approx-
imation throughout this work. In order to achieve an ex-
trapolation to the chiral limit, we employed three values of
the quark mass corresponding to a value of mπ that lies in
the range of 550 MeV–1 GeV for all the β values. For the
simulations of the lightest quark mass at each β value (the

corresponding pion masses range in 4.5 ≤ mπL ≤ 5.2), we
have corrected for the finite size effects, following [21]. For
all the β values the finite size corrections are in the region
0.5%–1.3%. The summary of our bare results in Table 2
are thus free from finite size effects. The systematics com-
ing from the higher excited states have been controlled as
explained in the previous section.

3.2 Renormalization constant

In order to renormalize the bare matrix element at the
scale µ0, where we can make contact to the running de-
scribed by the non-perturbatively computed UV invariant
step scaling function SUV,SF

INV (µ0), we have to compute the
renormalization constants ZSF(µ0). The continuum limit
of the renormalized matrix element requires one to compute
ZSF(µ0) at exactly the lattice spacing, where the matrix
element has been calculated, while keeping the scale fixed.
Decreasing the lattice spacing a, we would hence have to in-
crease the lattice volume in order to stay at a fixed value of
µ0 = (1.436r0)−1. Since we cannot vary the lattice size con-
tinuously, we performed instead simulations on a sequence
of lattice sizes and adjusted the values of β to realize the
correct value of µ0. The values of β are slightly different
from the ones used in [34] and were obtained [35] using
a new determination of r0/a [36]. We recall that for our
determination of the renormalization constant at the scale
µ0 using the finite volume SF scheme we have performed
simulations directly at κ = κc, determined through the
PCAC Ward identity. Details about the computation of
the renormalization factor, such as renormalization con-
dition and external parameters typical of the SF scheme,
can be found in [11]. We give in Table 3 the parameters
of our runs and the values of the Z factors at µ0 for both
Wilson and O(a)-improved Wilson fermions.

In order to match the β values where the matrix ele-
ments themselves have been computed, we describe the β
dependence by an effective interpolation formula,

ZSF(µ0) =
2∑

i=0

zSF
i (β − 6.0)i (36)

with the coefficients for Wilson and O(a)-improved Wilson
fermions listed in Table 4. The statistical uncertainty to

Table 1. Parameters of our simulation points. N denotes the
number of measurements taken into account. For all β values
except for β = 6.1 the number of measurements refers to Wilson
and Clover simulations individually

β = 6/g2
0 r0/a L/a T/a N

6.0 5.37(2) 16 32 600
6.1 6.32(3) 24 42 600 (Wilson)
6.1 6.32(3) 32 56 185 (Clover)
6.2 7.36(3) 24 48 600
6.3 8.49(4) 24 64 400
6.45 10.46(5) 32 72 400
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Table 2. Results for the pseudoscalar mass and the bare matrix element at all our
simulation points. We specify also the fit interval for the effective mass and the bare
matrix element obtained from the request of having the systematic uncertainty coming
from the excited states below 0.1% and 0.4%, respectively. See text for further details

β = 6/g2
0 κ csw Fit interval mπ Fit interval 〈x〉

6.0 0.153 0 14–21 0.4205(14) 12–20 0.3080(18)

0.154 0 14–20 0.3606(17) 12–20 0.2994(24)

0.155 0 14–19 0.2924(21) 13–19 0.2876(38)

6.1 0.151605 0 17–31 0.3685(05) 17–25 0.3073(12)

0.152500 0 17–30 0.3120(06) 17–25 0.2951(16)

0.153313 0 16–29 0.2536(07) 16–26 0.2799(21)

6.2 0.150600 0 19–35 0.3147(09) 20–28 0.3037(21)

0.151300 0 19–34 0.2674(10) 20–28 0.2918(27)

0.151963 0 18–33 0.2163(12) 20–28 0.2763(38)

6.3 0.149259 0 22–46 0.2968(08) 22–42 0.3033(20)

0.149978 0 22–45 0.2481(10) 21–43 0.2888(29)

0.150604 0 21–44 0.1996(12) 19–45 0.2704(44)

6.45 0.1486 0 29–51 0.2045(06) 28–44 0.2854(23)

0.1489 0 29–50 0.1808(07) 28–44 0.2767(27)

0.1492 0 30–49 0.1547(08) 28–44 0.2652(35)

6.0 0.1334 NP [32] 15–20 0.4021(13) 14–18 0.2704(21)

0.1338 NP 14–20 0.3551(13) 14–18 0.2667(26)

0.1342 NP 14–19 0.3028(16) 15–17 0.2636(41)

6.1 0.1340 NP 17–46 0.3534(05) 16–40 0.2671(14)

0.1345 NP 17–46 0.2947(05) 16–40 0.2579(17)

0.1350 NP 17–43 0.2239(06) 16–40 0.2467(26)

6.2 0.1346 NP 19–33 0.2798(07) 19–29 0.2624(18)

0.1349 NP 18–32 0.2430(08) 19–29 0.2567(23)

0.1352 NP 18–32 0.2008(09) 18–30 0.2500(29)

6.3 0.1346 NP 21–42 0.2640(07) 22–42 0.2643(16)

0.1349 NP 21–42 0.2284(07) 22–42 0.2573(20)

0.1352 NP 21–42 0.1881(08) 21–43 0.2467(26)

6.45 0.1348 NP 26–52 0.2040(05) 26–46 0.2566(19)

0.1350 NP 25–51 0.1791(05) 26–45 0.2502(24)

0.1352 NP 25–50 0.1513(06) 27–45 0.2426(31)

Table 3. Results for ZSF
O44 and ZSF

O12 at the scale µ0 = (1.436r0)−1 with
Wilson and non-perturbatively improved clover actions

L/a β = 6/g2
0 κc csw ZSF

O44 ZSF
O12

8 6.0055 0.153597(14) 0 0.3211(44) 0.3673(35)

10 6.1425 0.152277(10) 0 0.2994(43) 0.3467(35)

12 6.2670 0.151024(7) 0 0.3008(43) 0.3462(33)

16 6.4825 0.149012(12) 0 0.2861(57) 0.3262(44)

8 6.0055 0.135006(5) NP [32] 0.3451(37) 0.3423(31)

10 6.1425 0.135625(4) NP 0.3204(36) 0.3260(31)

12 6.2670 0.135756(3) NP 0.3131(35) 0.3287(30)

16 6.4825 0.135617(4) NP 0.3029(43) 0.3167(37)

Table 4. Coefficients of the interpolating polyno-
mials, (36) and (42). Uncertainties are discussed in
the text

csw applicability i zSF
i zRGI

i

0 6.0 ≤ β ≤ 6.5 0 0.3197 1.446

1 −0.1166 −0.527

2 0.1046 0.473

NP [32] 6.0 ≤ β ≤ 6.5 0 0.3451 1.561

1 −0.1806 −0.817

2 0.1962 0.888
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Fig. 6. Numerical results for ZSF
O44(g0, µ0) together with their

interpolating polynomials

be taken into account when using this formula is about
1.1% for the non-perturbatively improved clover action
and 1.4% for the Wilson action2. In Fig. 6 we show the β
dependence ofZSF(µ0) for theO44 operator and for the two
actions used, together with the plot of the interpolating
formula (36).

Using this interpolation formula, we can match the
values of a corresponding to the β values used for the
computation of the bare matrix element, which allows one
finally to obtain the renormalized matrix element at the
scale µ0 in the continuum limit.

We have performed a continuum extrapolation at fixed
values of (r0mπ)2. Fixing (r0mπ)2 is achieved by interpolat-
ing our barematrix elements linearly in the quarkmass.The
physical values of the pion mass range 550 MeV < mπ <
1 GeV. In Fig. 7 we show an example of the continuum limit
at our next to lowest pion mass ((r0mπ)2 = 2.57). The con-
tinuum extrapolation of the renormalized matrix element

〈x〉SF(µ0, r0mπ) = lim
a→0

〈π|O44|π〉(a, r0mπ)
ZSF(a, µ0)

, (37)

has been done via a constrained linear fit in the lattice
spacing a using simulation results obtained with the Wil-
son and clover action. For all the values of the pion mass we
have performed this constrained extrapolation excluding
the coarsest lattice of our data set. In Sect. 5 we will discuss
the uncertainties connected with the continuum extrapola-
tion, and the one related to the chiral extrapolation. If we
perform the chiral extrapolation linearly in the pion mass
squared directly in the continuum we obtain a value of

〈x〉SF(µ0) = 0.810(33) (38)

for the continuum renormalized pion matrix element in the
SF scheme.

We can anticipate here for clarity that, in this partic-
ular case, to invert the order of the chiral and continuum

2 For β ≈ 6.5 the error to be associated grows to 1.4% for
the non-perturbatively improved clover action and to 2.0% for
the Wilson action.
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Fig. 7. Combined continuum extrapolation for the pion ma-
trix element computed with Wilson and O(a)-improved Wilson
fermions, at (r0mπ)2 = 2.57, which corresponds to a pion mass
of mπ = 632 MeV

extrapolation gives a fully consistent result, independently
on how the continuum extrapolation is performed.

4 RGI matrix element

The phenomenological analysis of the experimental data
is usually done in the MS scheme. In order to translate
our fully non-perturbatively computed matrix element
〈x〉SF(µ0) renormalized in the SF scheme to the MS scheme,
we need first to calculate the universal renormalization
group invariant matrix element. This is done following the
complete non-perturbative evolution [11] of the step scaling
function in the SF scheme as outlined above. Using the UV
invariant step scaling function as determined in our earlier
work [11], it is now possible to eliminate any reference to
the scale µ0 and to obtain finally the RGI matrix element.
In [11] we have already computed

SUV,SF
INV (µ0) = 0.221(9) . (39)

Thus using (8) we can obtain the main result of this pa-
per:

〈x〉RGI = 〈x〉SF(µ0) SUV,SF
INV (µ0) = 0.179(11) . (40)

The RGI matrix element allows for a simple conversion
to any desired scheme (e.g. MS at 2 GeV) requiring only
the knowledge of the β and γ function up to a certain
order in perturbation theory in this scheme [37, 38]. The
total renormalization factor to directly translate any bare
matrix element of O44 into the RGI matrix element, can
be written as

ZRGI(g0) =
ZSF(g0, µ0)

SUV,SF
INV (µ0)

. (41)
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Combining (39) and the interpolating formula (36) we ob-
tain a further interpolating polynomial:

ZRGI =
2∑

i=0

zRGI
i (β − 6.0)i (42)

whose coefficients are listed in Table 4. These parametriza-
tions of ZRGI are to be used with the same uncertainty of
ZSF and an additional error of 4.0%, coming from the un-
certainty of SUV,SF

INV (µ0), that has to be added quadratically
after performing a continuum extrapolation. Our resulting
number 〈x〉MS(µ = 2 GeV) = 0.246(15) is not fully compat-
ible with a previous lattice computation [40], where it was
found that 〈x〉MS(µ = 2.4 GeV) = 0.273(12) and is in bet-
ter agreementwith the result coming fromthe global fits [29]
of experimental data, 〈x〉phen(µ = 2 GeV) = 0.21(2). The
disagreement of these numbers could be explained by the
fact that in this paper we analyze and correct for several
sources of systematic errors. We apply a non-perturbative
renormalization and perform the continuum limit, while
in [40] a perturbative renormalization was adopted without
performing the continuum limit (only one lattice spacing).
Moreover we correct, where present, for finite size effects.

5 Chiral and continuum extrapolation

Since the form of the correct chiral extrapolation of the
lattice data obtained at rather large quark masses is still
under debate (see [16] for a recent review and references
therein, while for the problem considered here see [23–28]),
we aimed at avoiding a possible source of systematic error
and first performed a continuum extrapolation and then
tried to extrapolate the data to the chiral limit. In this way,
continuum chiral perturbation theory is applicable and we
do not have to worry that chiral symmetry breaking effects
may spoil the chiral extrapolation at non-vanishing values
of the lattice spacing. We fixed the physical values of the
pion mass in units of r0 [39] and performed a continuum
extrapolation keeping r0mπ fixed. To this end we had to
slightly interpolate the values of the matrix elements, since
in our simulations the pion mass at different values of β
were not obtained at the same value of the physical pion
mass. The corresponding error, taking the correlations into
account, of this slight interpolation is, however, well below
the statistical accuracy of our numerical data. We have
performed the continuum limit of the matrix element from
our simulation points using three, four and five values of
β, employing Wilson and O(a)-improved Wilson fermions,
in order to study the effect of including coarser lattices
for the continuum extrapolation. This detailed analysis
is summarized in Fig. 8. In all the following discussion,
when we talk about chiral extrapolation, we use a linear
extrapolation in the squared pion mass.

In this figure we plot the value of 〈x〉MS(µ = 2 GeV)
as a function of the number of points used to perform the
continuum extrapolation. Moreover, for each choice of the
number of points used, we compare several ways to perform
the continuum and chiral limit (the symbols refer to the
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<x>M−S− ( µ = 2 GeV )
1st cont constrained, 2nd chiral
1st chiral, 2nd cont constrained
1st chiral, 2nd cont Wilson only
1st chiral, 2nd cont Clover only
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Fig. 8. Value of 〈x〉MS(µ = 2 GeV), obtained from our lattice
simulations, as a function of the number of points used to
perform the continuum extrapolation. For each choice of the
number of points used we compare several ways to perform the
continuum and chiral limit: (�) first the constrained continuum
limit and then the chiral extrapolation; (�) first the chiral
extrapolation and then the constrained continuum limit; (�)
first the chiral extrapolation and then the continuum limit using
only the Wilson data; (◦) first the chiral extrapolation and
then the continuum limit using only the clover data. The band
represents the same quantity, with its error, obtained through
global fits of the experimental data [29]

symbols in Fig. 8):
(1) first the constrained continuum limit and then the chiral
extrapolation (�);
(2) first the chiral extrapolation and then the constrained
continuum limit (
);
(3) first the chiral extrapolation, then the continuum limit
using only the Wilson data (�);
(4) first the chiral extrapolation, then the continuum limit
using only the clover data (◦).

All these lattice results are compared with the same
quantity obtained through global fits of the experimental
data [29]. Our conclusions, for this quantity and for the
range of masses and lattice spacings simulated are twofold.
First of all, the order of how to perform the chiral and con-
tinuum extrapolation is irrelevant, independently of which
action is used to do the continuum limit. Then the contin-
uum limit is consistent if performed using three, four or
five points, also in this case, independently of the lattice
action used.

We decided to perform first the continuum limit at fixed
pion mass using the four points corresponding to the four
smallest lattice spacings. Only as a second step we then
perform the chiral extrapolation linearly in the squared
pion mass. The continuum extrapolated data at fixed m2

π

are collected in Table 5.
A remark is in order here. It has been shown in [25]

that in quenched chiral perturbation theory (QχPT) at the
leading order, this particular matrix element is free from
chiral logarithms. In [27] it has been shown that in the full
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Table 5. Results for the matrix element in the continuum
limit (quenched approximation), converted to the MS scheme
at 2 GeV. The continuum extrapolation was performed with
a constrained linear fit of the Wilson and non-perturbatively
improved clover data for the four smaller lattice spacings. The
value in the chiral limit is obtained from a linear fit (see text
for details)

m2
π [GeV2] 〈x〉MS (µ = 2 GeV)

1.000 0.312(20)
0.900 0.306(17)
0.800 0.300(15)
0.700 0.293(14)
0.600 0.285(13)
0.500 0.279(13)
0.400 0.274(14)
0.315 0.269(15)
0.000 0.246(15)
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Fig. 9. Chiral extrapolation in the continuum. The dashed
curves refer to the formula (43) with Λ = {0.4, 0.7, 1.0} GeV and
fπ = 93 MeV. The chiral extrapolated value (�) is compared
with the phenomenological estimate (�)

χPT indeed there are chiral logarithms. In [24] an effective
phenomenogical ansatz is given by

〈xn〉 = An

[
1− 1

(4πfπ)2
m2

π ln
(

m2
π

m2
π + Λ2

)]
+Bnm

2
π , (43)

motivated by the chiral expansion in the full theory. A
similar formula was suggested to explain the discrepancy
between the lattice results and the global fits of the exper-
imental data of the proton 〈x 〉.

In Fig. 9 we show the continuum values of the renor-
malized matrix elements as a function of the pion mass
(see Table 5). In order to illustrate possible unquenching
effects we also perform a chiral extrapolation using (43).
For the different dashed curves in Fig. 9 we used differ-
ent values of the parameter Λ = {0.4, 0.7, 1.0}GeV that
is supposed to provide an estimate of the size of the pion

cloud. However, the data, even in the continuum limit,
clearly prefer a straight line extrapolation consistent with
the results of QχPT. Using a linear chiral extrapolation
we obtain a final value for our matrix element consistent
with the experimental results, up to quenching effects. In
order to disentangle the quenched and chiral uncertainties,
lattice data have to be provided very close to the physi-
cal point, where the pion assumes a mass as measured in
experiment; presumably chiral invariant formulations of
QCD are necessary to clarify the question of the chiral ex-
trapolation. For the time being and for this work we take
the straight line behavior as suggested by the numerically
obtained data for the chiral extrapolation.

5.1 Discussion and concluding remarks

The main results of our paper, i.e. the renormalization
group invariant matrix element and the renormalized ma-
trix element at a scale of 2 GeV in the MS scheme, are
summarized in (1) and (2). Comparing our results to phe-
nomenological estimates, it turns out to be slightly higher,
but already more precise than the latest NLO analyses of
Drell–Yan and prompt photon πN data [29], which yield
a combined experimental value of 〈x〉MS(µ = 2 GeV) =
0.21(2). These results have been computed for the valence
quark distribution3. We conclude that the non-perturbat-
ively obtained number for the twist-2 matrix element of
a pion is not completely consistent with phenomenologi-
cal estimates. Although this should not be too worrisome,
since we are still left with the quenched approximation, it
is worthwhile to discuss the lattice numbers further.

One cause for the deviation could lie in the chiral ex-
trapolation of this matrix element that was done linearly
in the pion mass. If we would use the phenomenological fit
ansatz of [24], we find 〈x〉MS(2 GeV) = 0.21(1)(2), where
the first error corresponds to varying the data in their error
bars and the second error is the variation for Λ in the range
0.4 to 1.0 GeV. Clearly this chiral extrapolation would rec-
oncile the lattice results with experiments. However, as can
be seen in Fig. 9, at the moment it is not possible to test
such an ansatz unambiguously, since the values of quark
masses used in the simulations are too large. Only with
future simulations, presumably employing e.g. chiral in-
variant formulations of lattice QCD, this question could
be clarified.

Another cause of the deviation could certainly be the
quenched approximation, which is a severe limitation and
effects of dynamical quarks have to be explored in the
future. In any case, we conclude that the Schrödinger
functional method has been proven to provide an excel-
lent tool to compute the non-perturbative scale evolu-
tion of multiplicatively renormalized quantities such as the
quark mass [34] or the matrix elements [11] considered in
this work.

3 We remark here that, as stated in [29], the extraction of
the sea distribution in a pion is currently impossible due to the
lack of the necessary data at low Bjorken variable x.
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Fig. 10. Continuum extrapolation of the non-perturbatively
renormalized matrix element of O44 between proton states
based on the quenched bare data, both already chirally extrap-
olated linearly in the quark mass, from [42,43], using the non-
perturbatively computed Z factor of the present work (ZeRo
Collaboration)

In order to further utilize our results, we attempted to
use the non-perturbatively obtained renormalization con-
stants to see the effect of a non-perturbative renormaliza-
tion on the results of other groups on the quenched bare
matrix element of the O44 operator between proton states
(preliminary results can be found in [41]).

The LHPC Collaboration [43] has computed the bare
matrix element of the O44 operator between proton states
at β = 6.0 using the Wilson action. The QCDSF Collab-
oration [42] has computed the bare matrix element of the
O44 operator between proton states at β = 6.0, 6.2, 6.4 us-
ing the non-perturbatively improved clover action. Both
collaborations perform a chiral extrapolation linear in the
quark mass at fixed lattice spacing. If we take now the
non-perturbative renormalization factor computed in this
paper (ZeRo Collaboration), we obtain the result summa-
rized inFig. 10,wherewe show the continuumextrapolation
of the non-perturbatively renormalized matrix element of
O44 between proton states based on the bare data, already
chirally extrapolated, from [42], and as a comparison the
same non-perturbatively renormalized matrix element us-
ing the bare data of [43]. In Fig. 10 we also indicate the
result obtained from global fits of the experimental data as
listed in [43] (see references therein for details). The final
numerical results are

〈x〉MS(µ = 2 GeV) = 0.227(14) ZeRo + QCDSF,

〈x〉MS(µ = 2 GeV) = 0.243(20) ZeRo + LHPC,

β = 6.0,

〈x〉MS(µ = 2 GeV) = 0.154(3) global fits. (44)

For the first time a continuum extrapolation in the case
of the proton matrix element could be done, thanks to
the non-perturbative renormalization factor computed in
this paper.
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Appendix

For the computation of the matrix elements the quark fields
are chosen to be periodic in the three space directions,

ψ(x+ Lk̂) = ψ(x), ψ(x+ Lk̂) = ψ(x) . (A.45)

The lattice derivatives in the forward direction are given by

∇µψ(x) =
1
a

[U(x, µ)ψ(x+ aµ̂)− ψ(x)], (A.46)

∇∗µψ(x) =
1
a

[ψ(x)− U(x− aµ̂, µ)−1ψ(x− aµ̂)], (A.47)

and the backward derivatives are defined by

ψ(x)
←−∇µ =

1
a

[ψ(x+ aµ̂)U(x, µ)−1 − ψ(x)], (A.48)

ψ(x)
←−∇∗µ =

1
a

[ψ(x)− ψ(x− aµ̂)U(x− aµ̂, µ)] . (A.49)
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4. J. Blümlein, H. Böttcher, Nucl. Phys. B 636, 225 (2002)
5. R. Petronzio, Nucl. Phys. B Proc. 73, 303 (1999);
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